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Abstract. This paper presents a globally convergent method for solving a general semi-infinite linear 
programming problem. Some important features of this method include: It can solve a semi-infinite 
linear program having an unbounded feasible region. It requires an inexact solution to a nonlinear 
subproblem at each iteration. It allows unbounded index sets and nondifferentiable constraints. The 
amount of work at each iteration k does not increase with k. 
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1. Introduction 

The primal problem of semi-infinite linear programming is defined as 

(SIP) maximize cTx 
subject to U(U)~X - b(u) 5 0 for all u E V, 

where c, x E R”, U C: Rm is an index set containing infinitely many points, 
a : U + Rn, and b : U + R’. Without loss of generality, we assume that c is a 
unit vector, u(u) # 0 for all u E U, and sup{)l(a(u), b(u))ll, : u E U} < 00. 

There are many practical as well as theoretical problems in which the constraints 
depend on time or space and thus can be formulated as semi-infinite programs. The 
question of how to compute numerically a solution of a semi-infinite program 
has received increasing attention (see, e.g., Ferris and Philpott (1989), Hu (1990), 
Kortanek and No (1993), and Todd (1994)). For a recent extensive survey on semi- 
infinite programming theory, methods, and applications, one may consult Hettich 
and Kortanek (1993). Some common restrictions on (SIP) imposed by most existing 
methods are that the feasible region must be bounded and the index set U must be 
compact and have a nice structure. Many methods also require, at each iteration k, 
finding an exact solution of the nonlinear program s~p{u(~)~x’ - b(u) : u E U}. 
In this paper we present a globally convergent method for solving a general semi- 
infinite linear programming problem. Some important features of this method 
include: It can solve a semi-infinite linear program having an unbounded feasible 
region. It requires an inexact solution to a nonlinear subproblem at each itera- 
tion. It allows unbounded index sets (e.g., U = { 1,2, . . . }) and nondifferentiable 
constraints. The amount of work at each iteration k does not increase with k. 
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2. Preliminaries 

Let S = {z : a(~)~, - b(u) 5 0 for all u E U} denote the feasible region of 
(SIP), v* = sup{& : z E S} denote the optimal value of (SIP), and S” = {z E 
S : cTz = u*} denote the set of optimal solutions of (SIP). We assume that S is 
nonempty, which can be verified by solving a phase (I) problem (Gustafson 1983). 
Note that S* may be empty if S is unbounded. 

Let I( . 11 be the Euclidean norm and d(z) = min{ 1111: - y]l : y E S} be the 
Euclidean distance from 2 to S. 

For any real number t, we define 

t+ = 
{ 

t, if t > 0; 
0, if t < 0. 

Let r(z) = sup{ ( U(U)~Z - b(u))+ : u E U} be the “biggest violation” by 2. 
It is easy to verify that (i) 0 < r(z) < co for all x E Rn, (ii) r(z) = 0 if and 
only if x E S, (iii) r(z) > sup{u(~)~x - b(u) : u E U} for all x E Rn, (iv) 
r(x) = sUp{u(U)~ x - b(u) : u E U} if 2 $! S, and (v) r(x) is a continuous convex 
function on R”. 

r(x) measures how much 2 violates the constraints and d(z) measures how far 
x is from the feasible region. If the feasible region S is ill-conditioned, then it is 
possible to find a sequence {z” : k, = 1,2,. . . } such that limk,, r(&) = 0 and 
limk,, d(z’“) = co (Hu and Wang 1989). In this situation, the task of computing 
numerically a solution to (SIP) becomes very difficult. Hence, in the rest of our 
discussion, we assume that S satisfies the following condition: 

CONDITION A. There exists a constant r > 1 such that d(x) < IT for all 
x E P. 

The existence and computation of r are discussed in Hu and Wang (1989). For 
example, if there exists a unit vector 2 and a positive number /3 such that U(U)“Z > 
,B for all u E U, then Q- = p-‘. Note that S is unbounded in this case. For a second 
example, if S is bounded by M and b(u) > S > 0 for all u E U, then r = 6-‘M. 
The existence of a relatively small r ensures that if 2 almost satisfies the constraints, 
then x is close to (in Euclidean distance) the feasible region. 

The basic idea of our method is: Let ek > 0, XI, > 0, and xk be the current 
iterate. Find a constraint whose index uk is an El, solution of the nonlinear program 
sup{u@)T(xk + XkC) - b(u) : u E U}. If xk + Xkc satisfies this constraint, then 
xk + Xkc is close enough to the feasible region and the method can focus on 
improving the objective function value by letting xks’ = xk + XkC. Otherwise, the 
method takes care of optimality and feasibility by letting xk+l be the projection of 
Xk + &C on u(uk)TX = b(uk). The sequence {xk : k = 1,2,. . . } will Converge 
to an optimal solution of (SIP) if an optimal solution exists and the sequences 
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{X,+ > 0 : k = 1,2, . . . } and {EI, > 0 : k = 1,2, . . . } satisfy the following 
condition. 

CONDITION B. 

031) CE1 AI, = 00; 
P-4 C& X2, < ~0; 
(B3)xi/~jIj-i+lforalljLi>l; 
(B4) limk,, ek/Xk = 0. 

For example, if XI, = 1 /k and EI, = l/k2 for all k = 1, 2, . . . , then Condition 
B is satisfied. (Bl) and (B2) are typical assumptions of the subgradient method 
(see, e.g., Bazaraa et al. (1993)). (B2) implies that limk,oo XI, = 0 and sup{& : 
k = 1,2,...} < 00. (B3) plays an important role in the convergence proof of our 
method. (B2) and (B4) imply that limk,, Q = 0. If Condition A and Condition B 
are satisfied, then the entire sequence {z” : k = 1,2, . . . } generated by the method 
will converge to an optimal solution of (SIP) as long as an optimal solution exists. 
This method is inspired by the subgradient method. 

3. The Method 

Let {X, > 0 : k = 1,2,. ..}and{e~>O:k=1,2,...}satisfyConditionB. 

THE METHOD. 
Step 0. 

Let k := 1; 
let z r be an arbitrary point in 8”; 
let cy be a constant satisfying 0 < Q < 1. 

Step 1. 
Find a ii E U such that 
u(a)*(xk + XkC) - b(E) 1 sUp{u(U)T(X~ + XkC) - b(u) : U E U} - Ek; 
if c~(G)~(z” + Xkc) - b(a) 5 0 or ek < c~(a(ti)~(z” + Xkc) - b(G)), 
then let uk := U, go to Step 3; 
otherwise, go to Step 2. 

Step 2. 
Let .zk := c~(a(ti)~(z’” + Xkc) - b(u)); 
find a U’ E U such that 
u(ti”y-(x” + A@) - b(u”) 2 sUp{u(U)~(~~ + XkC) - b(u) : U E U} - Ek, 
go to Step 3. 

Step 3. 
If u(Uk)T(zk + &c) - b(u’) < 0, then let zk+l := xk + &c; 
otherwise, let 
Xk+’ := Xk + &c - (C+k)T(xk + ii/&) - b(~k))u(~k)/llu(~k)~~2; 
k := k + 1, go to Step 1. 0 
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To implement the method, one needs to find an ek-optimal solution of the subprob- 
lem sup{c~(U)~(x” + Xkc) - b(u) : u E U} at each iteration. Thus, the practical 
applicability of the method is restricted to problems where the subproblems can 
be solved efficiently. The constant parameter Q can be specified according to the 
efficiency of the procedure used for solving the subproblem, i.e., a smaller LY for 
a more efficient procedure. In Step 3, if xk+l = xk + &c, we say that xk+’ is 
type 1; otherwise, x ‘+l is the projection of xk + &Con FIX = b(u”) and we 
say that x Icsl is type 2. The following facts will be used in the convergence proof. 
Note that Fact 2 is guaranteed by Step 2 of the method. 

FACT 1. If xk+i is type 2, then for all y E S, 

11x k+l - y/l2 < /lx’ + && - y/112 - Ilxk+’ - (x’” + &c)112. 

FACT 2. If XkS1 iS type 2, then Ek 5 LYr(Zk f &C). 

First, let’s discuss a special case. If xk+l = xk for a certain k, then xkS1 is type 2, 
a(~“) is parallel to c, and thus cTxk+l > w* and d(x’“+‘) 5 (1 - 8)-l& (where 
0 < 0 < 1, see Lemma 1). Hence, xksl is an approximate solution of (SIP) if 
xk+’ = xk and Ak is sufficiently small, and xk+’ is an exact optimal solution 
of (SIP) if xk+l = xk = z for infinitely many k. Next, we consider the general 
case and we show that the sequence {xk : k = 1,2,. . . } generated by the method 
converges to an optimal solution of (SIP) if S* # 0. 

LEMMA l.Let{z’ : k = 1,2,. . . ) be generated by the method. There exists a 
constant t9,O < 0 < 1, and a positive integer K such that d(x”+‘) 5 8d(xk) + xk 
for all k 2 K. 

ProofiForallk= 1,2,..., let yk be the point in S nearest to xk and zk be 
the point in S nearest to xk + &c, i.e., d(xk) = [lx’ - ykll and d(x” + &c) = 
llxk + &c - z’ll. Let 1M = max{l, sup{ Ilu(~ : u E U}} and K be sufficiently 
large such that rek < XI, for all k 1 K. The existence of such a K is guaranteed 
by Condition A and Condition (B4). If k > K and xkf’ is type 2, then 

lb ‘+I - (x” + &&)I[ = 

> 

= 

> 

2 

+k)T(xk + A@) - b(u”) 
I14uk> II 

sup{+)T(xk + &C) - b(u) : u 6 u} - Ek 
II+‘“) II 

T(xk + A@) - Ek 
II+‘“) II 

(1 - C+(xk + x,&c) 
h4 (Fact2) (1) 

(1 - +%-‘d(xk + i,kc) (ConditionA). 
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It follows from (1) and Fact 1 that 

4X kf1)2 5 IIxk+l - zq2 

5 llxk + A,@ - zk(12 - l(xk+l - (x’” + XkC)(12 

5 d(x” + &c)~ - (1 - a)2T-2M-2d(x” + &:c)~ 

= (1 - (1 - Cr)2r-2K2)d(x” + &c)~. 

Let e = (1 - (1 - CX) 7 2 -2iW-2) +. It is obvious that 0 < 8 < 1. Since d(x” + 
Xkc) 5 ljxk + Xkc - y”I( 5 d(x”) + Xk, we have proved d(x”+‘) 5 8d(x’) + A,, 
provided that xk+’ is type 2 and k > K. If xk+’ is type 1 and d(x’+‘) = 0, then 
0 = d(x”+‘) 5 8d(x”) + Xk. If xk+t is type 1, d(x”+‘) > 0, and k 2 K, then 

d(x”+‘) = d(x” + X,c) 

< TT(Xk + XkC) (ConditionA) 

= TsUp{c4(U)T(xk + &c) - b(u) : U E U} 

5 7&k 

< 0d(x”) + &. q 

LEMMA 2. Let {x” : k = 1,2,. . . ) be generated by the method. Let 0 and K be 
defined as in Lemma 1. 
(a) For all k 2 K and m > 0, d(x k+m) 5 Pd(x’) + (1 - 8)-2xk+,-,. 
(b) lim&,oo d(x’) = 0. 

Proofi As (a) is obvious in the case m = 0, we now assume m > 1 and k > K. 
Applying Lemma 1 repeatedly, we have 

d(x’“+“) 5 8”“d(xk) + 5 #%k+m-n. 
n=l 

And, 

5 
en-9 kfm-n 

n=l 

IX Ak+m-l @Ak+m-+k+m-1 
n=l 

< &+m-t 2 P-‘(k+m--I - (k+m-n) + 1) (Condition (B3)) 
n=l 

5 Ak+m-I 5 72en-l 
n=l 

= (1 - e)-2Ak+m-1. 

Consequently, 

d(x”+” ) 5 Pd(x’) + (1 - 8)-2&+,-t for all m = 0, 1,2,. . . . 
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It is easy to see that (b) follows from (a). 0 

LEMMA 3. Let {x” : k = 1,2,. . . > be generated by the method. If the feasible 
region is bounded, then there exists a subsequence {xkj : j = 1,2, . . . } that 
converges to an optimal solution of (SIP). 

Proof: Since S is bounded and d(x”) + 0, the sequence {x” : k = 1,2,. . . } 
is bounded and any accumulation point of the sequence is feasible. Hence, 
lim supkioo cTxk < u*, where w* denotes the optimal value of (SIP). Since S 
is bounded, ‘u* is finite and can be attained, i.e., there exists an x* E S such that 
cTx* = w*. If limsupkioo cTxk < cTx*, then there exists an integer nr and a 
small positive number 6 such that cTxk < cTx* - S for all k > nl . If xk+’ is 
type 2 and k 2 n1, then 

Ilx k+l - x*(12 

5 llxk + &c - x*112 - llxk+1 - (xk + &c)1,2 

= llxk - x*/l2 - Ilxk+’ - xk1,2 + 2,hkcT(xk+’ - x*) 

I Ilxk - X*112 - 2&& 

If xk+l is type 1 and k 2 nl, then 

112 Ic+’ - x*112 = 11x’ + x,L& - x*112 
= 11x’ - x*112 -t AZ, + 2&c T k (x - It’*) 
I lIxk - x*/l2 + i!; - 2iikb. 

Therefore, for all k > n1 

IIX ‘+I - x*(12 5 j(xk - x*(12 + A; - 2x&. 

Adding (2) from k = n1 to any n > nl, we have 

l/X n+l - 2*1i2 5 llxn’ - X*/l2 + 5 $ - 26 5 &. 

(2) 

As Cp=r XE is convergent and Cp?t XI, is divergent, the above inequality cannot 
hold for a sufficiently large n. Consequently, we must have lim supk--,oo cTxk = 
cTx*. The lemma then follows easily from the boundedness of {x’” : k = 
1,2, . . . }. 0 

THEOREM 1. If the feasible region is bounded, then the sequence {x” : k = 
1,2, . . . } generated by the method converges to an optimal solution of (SIP). 

Proo$ Let 0, K, and y” be defined as in Lemma 1 and X0 = sup{& : k = 
1,2,...}. Wekn ow, from Lemma 3, that there exists a subsequence {xkj : j= 
1,2,. . . } such that limj+oo xkj = x* and x* is an optimal solution of (SIP). 
It remains to show that the entire sequence converges to x*. By Lemma 2 (b), 
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Lemma 3, and Condition (B2), for any given 6 > 0, there exists an integer J > 0 
such that for all j > J we have 

d(x”j) < PX,‘(l - q/s, (3) 

kj 2 K and II& - z*)12 < S*/4, and (4) 

2 A; < d2(1 - 0)*/S. (5) 
i=k-1 

Now let N = ICJ and n 2 N. If n = kj for some j > J, then l/~~i - z*/j2 < 
6*/4 < d2. Otherwise, kj < n < kj+l for some j 2 J and let I = n - kj > 0. If 
xk+’ is type 2 and k 1 K, then 

11X k+l - x*11* 5 ~~xk + A,$ - x*)j2 - IIxk+l - (x’” + &c)112 
= /lx’ - x*/l2 - l/x’+’ - xk1,2 + 2,!tkcT(xk+’ - X*) 
I Ilxk - x*1,* + 2&cT(xk+’ - y”+‘) + 2&,T(yk+1 - X*) 
I llxk - x*112 + 2&,1/cII Ilxk+l - ?Jk+‘II 
= jlxk - x*112 + 2&d(xk+‘) 
5 llxk - x*11* + 2-&@+‘“) + A,) 
5 llxk - x*/l2 + 2&&(x’“) + 2x;. 

If xk+* is type 1, then 

IlX k+l - x*112 = llxk + &,c - x*/l2 
= llxk -x*112+,$+2/\,& T k (x -x*) 
= /lx’ - x*j12 + ,$ + 2&CT(2’ - $) + 2/,kCT(y” - X*) 

5 llxk - x*112 + ,$ + 2X&(x’“). 

Hence, for all k 2 K 

llxk+1 - x*112 < 11x’ - x*112 + 2x2, + 2&d(xk). (6) 

Adding(6)fromk=kjtok=n-l=kj+Z--1, 

l-l l-l 

/xn - x*112 5 llxkJ - x*112 + 2 c r$j+m + 2 c ~kj+,d(xkJ+“). (7) 
m=O m=O 

From (3), (5), and Lemma 2 (a), 

1-l 

c Xkj+md(xkj+m) 

m=O 
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l-1 

5 c Xkj+Tr@‘“d(xkj) + (1 - 8)-2xkj+T?-t) 
m=O 

l-l l-1 

5 d(x”j)Ao c 8” + (1 - e)-2 c Xkj+mXkj+m-, 
m=O m=O 

00 

5 d(CC’G3)XO(l - 6)-’ + (1 - !9-2 x (xij+, + xEj+,-,)/2 
m=O 

< J2/4. (8) 

Finally, it follows from (4), (5), (7), and (8) that 11~~ - x:*/I < S for all n > N. q 

We have proved the convergence of the method for a bounded feasible region. 
The boundedness of S ensures that V* is finite and can be attained. However, if 
S is unbounded, then it is possible that (i) ZI* is infinite, (ii) V* is finite and can 
be attained, and (iii) V* is finite but cannot be attained. The next theorem tells us 
that in all three cases, the sequence (xk : k = 1,2, . . . } generated by the method 
has the property that lirns~p~+~ cTxk = V* and lirnkYm d(z”) = 0 (Lemma 2 
(b)). 

THEOREM 2. Let {x’ : k = 1,2,. . > be generated by the method. If the feasible 
region is unbounded, then lim supk,m cTxk = v* and limk,, d(x”) = 0. 

Proofi Let yk be the point in S nearest to z k. By Lemma 2 (b) and the feasibility 
of Yk, 

lim sup cTzk = lim sup(cTx” - cTyk + c’y”) 
k-m k-cc 

< limsup(Cx” - cTyk + v*) = v*. 
k-CC 

If lim supkioo cTxk < u*, then there exists a point 5 in S and a positive number 6 
such that 

lim sup cTxk + S 5 cTZ. (9) 
k+cc 

By the definition of lim supki~ cTxk, there exists an integer nl such that for all 
k 2 n1 

cTxk 2 limsupcTzk + S/2. (10) 
k-cc 

It follows from (9) and (10) that for all k 2 n1 

cTxk - cTZ 5 lim sup cTxk + S/2 - (lim sup c’l’xk + 6) = --h/2. 
k-m k+ca 

As in the proof of Lemma 3 (replace z* by z and S by 6/2 in (2)) for all k 2 n1 

11X Ic+’ - ??[I2 5 I/x’ - iill + ,$ - &6. 
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Adding the above inequality from k = nl to a sufficiently large n leads to a 
contradiction. Therefore, lim supkim cTxk = 21”. 0 

Finally, we prove the convergence of the method for an unbounded feasible 
region. 

THEOREM 3. If the feasible region is unbounded and S* # 0, then the sequence 
{x” : k = 1,2,. . . } g enerated by the method converges to an optimal solution of 
(SIP). 

Prooj First, we prove that {x” : k = 1,2, . . . } is bounded. Let x* E S* and K 
and 19 be defined as in Lemma 1. Let Xu = sup{xI, : k = 1,2, . . . }. As in the proof 
of Theorem 1, for all k > K 

llx k+l - x*jj2 5 llxk - x* II2 + 2x2, + 2&&(X’). (11) 

Adding(ll)fromk=Ktok=K+Z-lforanyI> 1, 

l-l l-l 

IIX 1\‘+1 - x*1/2 5 IlxK - x*11* + 2 c X&+m + 2 c X~+md(x1i+m).(12) 
m=O m=O 

By Lemma 2 (a), 

l-l 

c XI{+,d(x”+m) 

m=O 

l-l 

I c h-+m(~“+-q + (1 - q2k+m-I> 

m=O 

l-l l-l 

5 +qXo c 8” + (1 - e)-2 c Xl(+mXl(+m-j 

m=O m=O 

1-I 

< d(x’i)XO(l - e)-’ + (1 - 8)-2 C (X:i+,, + X~~+,,,-,)/2. (13) 
m=O 

It follows from (12), (13), and (B2) that {xk : k = 1,2,. . . } is bounded. From 
Theorem 2 and the boundedness of {x” : k = 1,2,. . . }, there exists a subsequence 

1 . xkj . j = 1,2,...} h t at converges to an optimal solution of (SIP). The proof 
for the convergence of the entire sequence is same as that of Theorem 1, as we 
now know that (3” : k = 1,2,. . .} is bounded and {xk, : j = 1,2,. . .} is 
convergent. 0 

We have proved that the sequence {CC” : k = 1,2, . . . } converges to an optimal 
solution of (SIP) provided an optimal solution exists. In the case that ‘u* is infi- 
nite or w* cannot be attained, the sequence {z” : k = 1,2,. . . } is unbounded, 
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limsupk,, cTxk = w*, and lirnkdoo d(zk) = 0. Thus the method solves (SIP) 
completely. 

4. Computational Results 

We use the method to solve the following semi-infinite linear program: 

maximize eTx 
subject to (u:, . . . , ui)x 5 uTAu for all u E S”-’ 

xi > 0 for all i = 1, . . . , n, 

where x E Rn, eT = (1, . . . , l), A is a given symmetric positive definite matrix, 
and S”-’ = {u E Rn : llull = 1) is the unit sphere in R”. It is known that 
a solution to this semi-infinite linear program is a solution to the educational 
testing problem (Fletcher, 1981). Letting B = (1, . . . , l)/fi, one can verify that a 
constant 7 satisfying Condition A is fi. Theoretically, the method is convergent as 
long as Cr=r Xk satisfies Condition B. Practically, the performance of the method 
depends on the choice of CT=1 Xh. A class of infinite series satisfying Condition B 
is CpYr (lnk)Y/lc, where y > 0. For a given problem, choosing a sufficiently large 
y can accelerate convergence and prevent the method from stalling (see Table I). 
At the k-th iteration, the nonlinear subproblem to be solved in Step 1 is 

max{max{uT(D(x’ + Xke) - A)u : u E Snel}, 

max{-(x~+X~):i=l,...Yn}}, 

where D ( zlc + XI, e) is a diagonal matrix with diagonal entries x! + Xk, i = 1, . , n. 

Itiswellknownthatsolvingmax{uT(D(xt+X~e)-A)u : u E S+‘}isequivalent 
to finding the biggest eigenvalue and a unit eigenvector of D(x” + Xhe) - A. The 
subroutine RS (Smith et al., 1970) is used to solve max{uT(D(z’ + Xke) - 
Ah : u E F-l } and it is assumed that RS can return “exact” eigenvalues and 
eigenvectors. Hence, the parameter cy is set to zero and Step 2 is skipped. For 
simplicity, the starting point is xi = A(i, i), i = 1, . . ., n. The stopping rule is 

lb k+l _ xkll < lo-* or k = 2000. Th e method was coded in FORTRAN and the 
program was executed on a SUN Sparcstation ELC. Given 

9 o-1 2 4 
0 10 1 3 -1 

A= 
2 3 -5 16 -2 
4 -1 0 -2 12 

We have tested the method for XI, = Ink/k, and XI, = (1nk)2/k. In addition, we 
have tested a mixed xk, i.e., XI, = (lnk)*//i? if k 5 300 and xk = l/rC if k > 300. 
Here the idea is to accelerate convergence by quickly reaching a neighborhood 
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TABLE I. 

XI, = Ink/k & = (ln/Z)‘/k mixed XI, 

final solution 51 3.996552 3.99999s 3.99995 1 
final solution x2 6.995968 6.999998 6.999943 
final solution 2s 9.991046 9.999995 9.999873 
final solution x4 4.019066 4.000010 4.00027 1 
final solution x5 6.997337 6.999999 6.999962 
final obj. value 3 1.999970 32.000000 32.000000 
total iteration 2000 608 398 
elapsed CPU (sec.) 7.50 2.29 1.50 

of an optimal solution and then reducing step lengths. The results are shown in 
Table I. 
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